DEPARTMENT OF MECHANICAL ENGINEERING

Unit-I

1.A	Define the Newton's law of viscosity and Buoyancy force.	4	Understanding	1
1.B	Explain the stability condition of completely submerged and partially submerged body.	8	Understanding	1
1.C	A cubical tank has sides of 1.5 m . It contains water for the lower 0.6 m depth. The upper remaining part is filled with oil of specific gravity 0.9 . Calculate: (i) Total pressure on one side of the tank, (ii) The position of center of pressure for one side of the tank.	8	Applying	1
1.D	A differential manometer connected at the two points A and B of two pipes as shown in fib. The pipe A contains a liquid of sp.gr. $=1.5$ while pipe B contains a liquid of $\mathrm{sp} . \mathrm{gr}$. $=0.9$. The pressure at A and B are $1 \mathrm{kgf} / \mathrm{cm}^{2}$ and $1.80 \mathrm{kgf} / \mathrm{cm}^{2}$ respectively. Find the difference in mercury level in the	8	Applying	1

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND

	DEPARTMENT OF MECHANICAL ENGINEERING		
Class Test - I	Session- January- June, 2022	Month-June, 2022	
Semester- IV	Subject- Kinematics of Machines		
Code - B037415(037)	Time Allowed: 2 Hours	Max Marks: 40	

Note: - Part A of Question 1 and Question 2 is compulsorv. Attempt anv Two Parts out of B, C and D in Question 1, Attempt anv one part out of B and C in Question 2.

Q. No		Questions	Marks	Levels of Bloom's Taxonomy
CO				

Question-1

The length of various link of mechanism as shown in fig. 1 (c) are as follow
$O A=150 \mathrm{~mm} ; A C=600 \mathrm{~mm} ; C Q=Q D=145 \mathrm{~mm} ; C D=125$
$\mathrm{mm} ; \mathrm{BD}=500 \mathrm{~mm}$ and $O Q=625 \mathrm{~mm}$. Draw the space and velocity diagrams.

Fic. 1 (C)

Figure shows a mechanism in which $\mathrm{OA}=\mathrm{QC}=100 \mathrm{~mm}$, $A B=Q B=300 \mathrm{~mm}$ and $C D=250 \mathrm{~mm}$. The crank $O A$ rotates at 150 rpm in the clockwise direction. Determine the (i) velocity of slider at D (ii) angular velocity of link $Q B$.
1.D

Question -2				
2.A	Explain velocity of rubbing taking a suitable example.	6	Remembering	C01
2.B	In the mechanism shown, crank $O A$ rotates at 20 rpm anticlockwise and gives motion to sliding blocks B and D. $O A=300 \mathrm{~mm}, \mathrm{AB}=1200 \mathrm{~mm}, \mathrm{BC}=450 \mathrm{~mm}$ and $\mathrm{CD}=450 \mathrm{~mm}$. Draw space diagram, velocity diagram and acceleration diagram and find: (i) Linear acceleration of D, (ii) Angular acceleration of	14	Analyzing	CO2

DEPARTMENT OF MECHANICAL ENGINEERING

Class Test -I	Session- Jan - June 2022	Month- June
Sem- $4^{\text {th }}$	Subject- Manufacturing Process	
Code - B037414(037)	Time Allowed: 2 hrs	Max Marks: 40

Note: - 1. Students are Required to focus on question and marks columns only.
2. In Unit I \& II, Question A is compulsory and attempt any two from B, C \& D.

Q. No	Questions	Marks	Levels of Bloom's taxonomy	CO						
Unit-I								$\mathbf{4}$	Understanding	CO 2
1.A	Define core and chaplet.	$\mathbf{8}$	Understanding	CO 2						
1.B	With the help of neat diagram ,discuss shell moulding casting	$\mathbf{8}$	Understanding	CO						
1.C	State the different type of moulding send. Explain each type their properties, composition and application.	$\mathbf{8}$	Understanding	CO 2						
1.D	Explain With the help of neat diagram different type element in gating system,	$\mathbf{8}$								

Unit - II				
2.A	Define welding process. Why flux used in welding.	$\mathbf{4}$	Understanding	CO3
2.B	What Do You Mean By Pattern? Explain Different Types Of Pattern.	$\mathbf{8}$	Understanding	CO 1
2.C	Explain the types of flames used in gas welding?	$\mathbf{8}$	Understanding	CO
2.D	Write The Difference Between TIG And MIG welding with a neat sketch?	$\mathbf{8}$	Understanding	CO 3

Question-2				
2.A	The efficiency of an Otto cycle is 50% and γ is 1.5. What is the compression ratio?	$\mathbf{4}$	\mathbf{U}	$\mathbf{1}$
2.B	Derive the expression of Air Standard Efficiency and Mean Effective pressure for Dual Cycle.	$\mathbf{8}$	\mathbf{U}	$\mathbf{1}$

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

Class Test - I	Session- January- June, 2022	Month- June, 2022
Semester- IV	Subject- Strength of Materials	
Code - B037413(37)	Time Allowed: 2 Hours	Max Marks: 40

Note: - For question 1, Part A is compulsory, attempt any Two Parts out of B, C and D. For Ouestion 2, Parts A and B are compulsory, attempt any one part out of Parts C and D.

Q.	Questions	Marks	Levels of Bloom's No	CO

Question: 1

1.A	(i) Define Young's modulus of elasticity. (ii) What is Bulk Modulus? (iii) Define normal stress. (iv) What is factor of safety?	4	Remembering	CO1
1.B	Derive the relationship between Bulk Modulus (k) and Young's modulus of elasticity (E).	8	Applying	CO1
1.C	A bar of steel is of square section 60 mmx 60 mm and 180 mm long. It is subjected to an axial compressive load of 300 kN . Lateral strain is prevented by application of uniform pressure. If Poisson's ratio is 0.3 and young's modulus is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, find alteration in length of the bar.	8	Applying	CO1
1.D	A steel bar as shown in figure consists of two parts AB and BC having areas of cross section of $\mathbf{4 \mathrm { cm } ^ { 2 }}$ and $5 \mathrm{~cm}^{2}$ respectively. It is rigidly fixed at end A and end C is at a distance of 1 mm from the other rigid horizontal support. A load of 100 kN is applied vertically downward at B. Determine the reactions produced by the rigid horizontal support and the stress in the parts $A B$ and BC of the bar. $\mathrm{E}=\mathbf{2 0 0}$ GPa.	8	Analyzing	CO1

Question: 2				
2.A	Explain the different types of beams with suitable diagrams.	5	Understanding	CO 2
2.B	Derive an expression for elongation of a conical bar due to its self weight.	5	Analyzing	C01
2.C	Draw the shear force and bending moment diagram.	10	Applying	$\mathrm{CO} 2$
2.D	Draw the shear force and bending moment diagram.	10	Applying	CO2

