T	SHRI SHANKARAC	HARYA INSTITUTE OF PROFESSIONAL MANAGEN	MENT AND	TECHNOLOGY	<i>I</i>	
		DEPARTMENT OF MECHANICAL ENGINEER	RING			
	Class Test – I	Session- Jan-June 2022	Month- June			
	Sem- 4 th	Subject- Fluid Mechanics				
Coc	le - B037412(037)	Time Allowed: 2 hrs	Max	Marks: 40		
Note:	 1. Students are Requ 2. In Unit I & II, Qu 	ired to focus on question and marks columns only. estion A is compulsory and attempt any two from B, C &	D.			
Q. No		Questions	Marks	Levels of Bloom's taxonomy	со	
		Unit – I				
1.A	Define the Newton	's law of viscosity and Buoyancy force.	4	Understanding	1	
1.B	Explain the stabilit submerged body.	y condition of completely submerged and partially	8	Understanding	1	
1.C	A cubical tank has s depth. The upper re Calculate: (i) Total press (ii) The positio	ides of 1.5m. It contains water for the lower 0.6m emaining part is filled with oil of specific gravity 0.9 . ure on one side of the tank, n of center of pressure for one side of the tank.	8	Applying	1	
1.D	A differential mano pipes as shown in fi B contains a liquid and 1.80 kgf/cm ² re differential manome	pometer connected at the two points A and B of two b. The pipe A contains a liquid of sp.gr. =1.5 while pipe of sp.gr. =0.9. The pressure at A and B are 1 kgf/cm ² espectively. Find the difference in mercury level in the $p_{A} = 1 \frac{5}{1 \text{ kgf}} / \text{cm}^{2}$ $p_{B} = 1.8 \text{ kgf} / \text{cm}^{2}$ 1 N) X P = 1.8 kgf / cm ² the seter.	8	Applying	1	

	Unit—II			
2.A	. Explain Compressibility and effect of temperature on viscosity.	4	Remember	1
2.B	Derive an expression for Hydrostatic force and position of Centre of Pressure for vertical plane surface.	8	Understanding	1
2.C	A cubical block weighing 4.5 N and having a 40 cm edge is allowed to slide down an inclined plane surface making an angle of 300 with the horizontal on which there is a uniform layer of oil 0.005 cm thick. If the expected steady state velocity of the block is 12.5 cm/s, determine the viscosity of the oil. Also express the kinematics viscosity in stokes if the oil has a mass density 800 kg/m3.	8	Applying	
2.D	A solid cylinder of diameter of 4.0m has a height of 4.0m. Find the meta centric height of the cylinder if the specific gravity of the material of cylinder =0.6 and it is floating in water with its vertical axis. State whether the equilibrium is stable or unstable.	8	Applying	1

			TAT M	ANACE	MENT AND	
SH	IRI SHANKAR.	ACHARYA INSTITUTE OF PROFESSION TECHNOLOGY	NAL M	ANAGE		
		DEPARTMENT OF MECHANICAL ENGL	NEER	ING		
Cla	ss Test – I	Session- January- June, 2022		Month-	June, 2022	
	nester- IV	Subject- Kinematics of Machines			5 1 10	
Code - B037415(037) Time Allowed: 2 Hours Max Marks:					larks: 40	
Note: - 1	Part A of Question	on 1 and Question 2 is compulsory. Attempt a y one part out of B and C in Question 2.	iny Two	Parts ou	t of B, C and I) in
Q. No	<i>n</i> 1, <i>mempe</i>	Questions		Marks	Levels of Bloom's Taxonomy	со
		Question – 1				
1.A	Explain the me acceleration.	eaning of Radial and Tangential compone	ents of	4	Understanding	CO2
	The mechaniss AB=DE=150m makes an angle clockwise dire oscillates about coupler BC. T driven by link of block F. (ii).	m shown has dimensions of links as form, BC=CD=450mm, EF=375mm.Crank e of 45 ⁰ with the horizontal and rotates about ction at a uniform speed of 120rpm. Lev at fixed point D which is connected to Al Fhe block F moves in horizontal guides, EF. Draw velocity diagram and Find: (i) W Angular velocity of DC.	ollows: AB ut A in ver DC B by a , being velocity			
1.B		375 mm 375 mm 375 mm B 45° A C	~	8	Applying	CO

	Question –2			
2.A	Explain velocity of rubbing taking a suitable example.	6	Remembering	CO1
2.B	In the mechanism shown, crank OA rotates at 20rpm anticlockwise and gives motion to sliding blocks B and D. OA=300mm, AB=1200mm, BC=450mm and CD=450mm. Draw space diagram, velocity diagram and acceleration diagram and find: (i) Linear acceleration of D, (ii) Angular acceleration of	14	Analyzing	CO2

$\frac{1}{1}$ $\frac{1}$	
2.C PQRS is a four bar chain with link PS fixed. The lengths of the links are PQ=62.5mm, QR=175mm, RS =112.5mm and PS=200mm. Crank PQ rotates at 10rad/s clockwise. Draw velocity and acceleration diagrams when angle QPS=60 ⁰ and Q and R lie on same side of PS. Find angular velocity and angular acceleration of link QR and RS.	CO2

.

.

•

.

۹.

1						
	SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY					
DEPARTMENT OF MECHANICAL ENGINEERING						
(Class Test – I	Session- Jan – June 2022	•	Month- June		
	Sem- 4 th	Subject- Manufacturing Process		5		
Cod	e - B037414(037)	Time Allowed: 2 hrs]	Max Marks: 40		
Note: -	1. Students are Requi 2. In Unit I & II, Qu	red to focus on question and marks columns only. estion A is compulsory and attempt any two from B, C	C & D.			
Q. No	Q. No Questions		Marks	Levels of Bloom's taxonomy	СО	
Unit – I						
1.A	Define core and cha	plet.	4	Understanding	CO2	
1.B	With the help of nea	at diagram ,discuss shell moulding casting	8	Understanding	CO2	
1.C	State the different tr properties, composi	vpe of moulding send. Explain each type their tion and application.	8	Understanding	CO2	
1.D	Explain With the he system,	Ip of neat diagram different type element in gating	8	Understanding	CO2	

		Unit – II			
	2.A	Define welding process. Why flux used in welding.	4	Understanding	CO3
ر	2.B	What Do You Mean By Pattern? Explain Different Types Of Pattern.	8	Understanding	CO1
	2.C	Explain the types of flames used in gas welding?	8	Understanding	CO3
	2.D	Write The Difference Between TIG And MIG welding with a neat sketch?	8	Understanding	CO3

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY

I

	DEPARTMENT OF MECHANICAL ENGINEERING							
С	lass Test – I	Session- Jan-June, 2022		Month- June, 2022				
S	emester 4th	Subject- Applied Thermodynam	ics		1 F			
Code	Code – B037411(037) Time Allowed: 2 Hours			Max I	Marks: 40			
Note:	- Part A(MCO) of	questions 1 and 2 is compulsory, from other p	parts B	, C and L) of questions	1 and		
2, atte	mpt any two parts.							
Ignore	e the columns of L	evel of Bloom's taxonomy and CO.			Lovels of			
Q. No		Questions		Marks	Bloom's taxonomy	CO		
		Question – 1						
1.A	Define Air stand of air standard cy	ard cycle. Explain the assumptions for the ana ucles.	lysis	4	U	1		
1.B	Derive the expres pressure for Dies	ssion of Air Standard Efficiency and Mean Effe el Cycle.	ective	8	U	1		
1.C	In an engine wor the beginning of compression rati and total heat sup Determine : (i) Pressure and (ii) Air standard (iii) Maan effecti	king on Dual cycle, the temperature and pressu f the cycle are 90°C and 1 bar respectively. To is 9. The maximum pressure is limited to 68 pplied per kg of air is 1750 kJ. temperatures at all salient points efficiency	ire at The 8 bar	8	A	1		
1.D	The minimum pro- and 27°C. The and (i) Determine the standard Otto cy (ii) Also calculate for a compression Take for air : c_y =	essure and temperature in an Otto cycle are 100 mount of heat added to the air per cycle is 1500 k e pressures and temperatures at all points of the cycle. e the specific work and thermal efficiency of the m ratio of 8 : 1. = 0.72 kJ/kg K, and $\gamma = 1.4$.	0 kPa kJ/kg. he air cycle	8	А	1		

	Question – 2			
2.A	The efficiency of an Otto cycle is 50% and γ is 1.5. What is the compression ratio?	4	U	1
2.B	Derive the expression of Air Standard Efficiency and Mean Effective pressure for Dual Cycle.	8	U	1

1

2.C	An engine of 250 mm bore and 375 mm stroke works on Otto cycle. The clearance volume is 0.00263 m ³ . The initial pressure and temperature are 1 bar and 50°C. If the maximum pressure is limited to 25 bar, find the following : (i) The air standard efficiency of the cycle. (ii) The mean effective pressure for the cycle. Assume the ideal conditions	8	A	1
2.D	The compression ratio and expansion ratio of an oil engine working on the dual cycle are 9 and 5 respectively. The initial pressure and temperature of the air are 1 bar and 30°C. The heat liberated at constant pressure is twice the heat liberated at constant volume. The expansion and compression follow the law $pV^{1.25} = constant$. Determine: (i) Pressures and temperatures at all salient points. (ii) Mean effective pressure of the cycle. (iii) Efficiency of the cycle. (iv) Power of the engine if working cycles per second are 8.	8	A	1

print 2 MECH-9fh Date - 14/04/22

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING						
Class Test – I Session- January- June, 2022 Month- June, 2022						
Semester- IV	Subject- Strength of Materials					
Code – B037413(37)	Time Allowed: 2 Hours	Max Marks: 40				

<u>Note: - For question 1, Part A is compulsory, attempt any Two Parts out of B, C and D. For Question 2,</u> <u>Parts A and B are compulsory, attempt any one part out of Parts C and D.</u>

	Q. No	- Questions		Levels of Bloom's Taxonomy	CO
		Question: 1			
	1.A	 (i) Define Young's modulus of elasticity. (ii) What is Bulk Modulus? (iii) Define normal stress. (iv) What is factor of safety? 	4	Remembering	CO1
	1.B	Derive the relationship between Bulk Modulus (k) and Young's modulus of elasticity (E).	8	Applying	C01
	1.C	A bar of steel is of square section 60mmx60mm and 180mm long. It is subjected to an axial compressive load of 300kN. Lateral strain is prevented by application of uniform pressure. If Poisson's ratio is 0.3 and young's modulus is 2x10 ⁵ N/mm ² , find alteration in length of the bar.	8	Applying	C01
	1.D	A steel bar as shown in figure consists of two parts AB and BC having areas of cross section of 4cm ² and 5cm ² respectively. It is rigidly fixed at end A and end C is at a distance of 1mm from the other rigid horizontal support. A load of 100kN is applied vertically downward at B. Determine the reactions produced by the rigid horizontal support and the stress in the parts AB and BC of the bar. E=200 GPa.	8	Analyzing	CO1

	Question: 2			
2.A	Explain the different types of beams with suitable diagrams.	5	Understanding	CO2
2.B	Derive an expression for elongation of a conical bar due to its self weight.	5	Analyzing	CO1
2.C	Draw the shear force and bending moment diagram. $10 \frac{10 R_{B}}{80 kN}$ $15 kN$ $15 kN$ $15 kN$ $15 kN$ $10 \frac{15 kN}{80 kN}$ $10 \frac{15 kN}{80 kN}$ $10 \frac{10 R_{B}}{10 kN}$	10	Applying	CO2
2.D	Draw the shear force and bending moment diagram. $A = \begin{pmatrix} 20 \\ 120 \\ C \\ C \\ R_{A} \\ K \\ 2m \\ 2m$	10	Applying	CO2

Driht MecH-4th Date-13/06/92